Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:19916818 > Initiation and earl...

Initiation and early crack growth in VHCF of stainless steels [Elektronisk resurs] Experimental and theoretical analysis

Tofique, Muhammad Waqas 1986- (författare)
Bergstöm, Jens (preses)
Hallbäck, Nils (preses)
Pallin-Luc, Thierry (opponent)
Karlstads universitet Fakulteten för hälsa, natur- och teknikvetenskap (from 2013) (utgivare)
Materials Engineering (medarbetare)
Karlstad Karlstads universitet 2016
Engelska 68
Serie: Karlstad University Studies 1403-8099
Läs hela texten
Läs hela texten
  • E-bokAvhandling(Diss. (sammanfattning) Karlstad : Karlstads universitet, 2016)
Sammanfattning Ämnesord
Stäng  
  • Mechanical fatigue is a failure phenomenon that occurs due to repeated application of mechanical loads. Very High Cycle Fatigue (VHCF) is considered as the domain of fatigue life greater than 10 million load cycles. Increasing numbers of structural components have service life in the VHCF regime, for instance in automotive and high speed train transportation, gas turbine disks, and components of paper production machinery. Safe and reliable operation of these components depends on the knowledge of their VHCF properties. In this thesis both experimental tools and theoretical modelling were utilized to develop better understanding of the VHCF phenomena. In the experimental part, ultrasonic fatigue testing at 20 kHz of cold rolled and hot rolled stainless steel grades was conducted and fatigue strengths in the VHCF regime were obtained. The mechanisms for fatigue crack initiation and short crack growth were investigated using electron microscopes. For the cold rolled stainless steels crack initiation and early growth occurred through the formation of the Fine Granular Area (FGA) observed on the fracture surface and in TEM observations of cross-sections. The crack growth in the FGA seems to control more than 90% of the total fatigue life. For the hot rolled duplex stainless steels fatigue crack initiation occurred due to accumulation of plastic fatigue damage at the external surface, and early crack growth proceeded through a crystallographic growth mechanism. Theoretical modelling of complex cracks involving kinks and branches in an elastic half-plane under static loading was carried out by using the Distributed Dislocation Dipole Technique (DDDT). The technique was implemented for 2D crack problems. Both fully open and partially closed crack cases were analyzed. The main aim of the development of the DDDT was to compute the stress intensity factors. Accuracy of 2% in the computations was attainable compared to the solutions obtained by the Finite Element Method. 
  • Very High Cycle Fatigue (VHCF) is considered as the domain of fatigue life greater than 10 million load cycles. Structural components that have service life in the VHCF regime include wheels and axles of high speed trains, gas turbine disks, and components of paper production machinery. Safe and reliable design, and the longevity, of these components depends on the knowledge of their VHCF properties. The overall aim of the experimental portion of this thesis was to gain in-depth knowledge of the VHCF properties of stainless steels. Fatigue test data in the VHCF regime was generated for different stainless steel grades using ultrasonic fatigue testing. The mechanisms for fatigue crack initiation and short crack growth were investigated using electron microscopes. Theoretical modelling of complex crack geometries involving kinks and branches was carried out by using the Distributed Dislocation Dipole Technique (DDDT). The main aim of this development was to compute the stress intensity factors and to analyse the stress state around the cracks. The results showed that accuracy of 2% was attainable compared to the solutions obtained by Finite Element Method (FEM). 

Ämnesord

Engineering and Technology  (hsv)
Materials Engineering  (hsv)
Other Materials Engineering  (hsv)
Teknik och teknologier  (hsv)
Materialteknik  (hsv)
Annan materialteknik  (hsv)
Materialteknik  (kau)
Materials Engineering  (kau)

Indexterm och SAB-rubrik

Very High Cycle Fatigue
Stainless steel
Ultrasonic fatigue testing
Crack initiation
Crystallographic crack growth
Distributed Dislocation Dipole Technique
Closed cracks
Inställningar Hjälp

Uppgift om bibliotek saknas i LIBRIS

Kontakta ditt bibliotek, eller sök utanför LIBRIS. Se högermenyn.

Om LIBRIS
Sekretess
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy