Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:ksdft2lkhnrlbrvs > High dynamic stiffn...

High dynamic stiffness mechanical structures with nanostructured composite coatings deposited by high power impulse magnetron sputtering [Elektronisk resurs]

Fu, Qilin, 1986- (författare)
et al. (författare)
Rashid, Md Masud-Ur (författare)
Nicolescu, Cornel-Mihai (författare)
Toth, Geza (författare)
Machine and Process Technology (medarbetare)
KTH Skolan för industriell teknik och management (ITM) (utgivare)
KTH Skolan för industriell teknik och management (ITM) (utgivare)
Publicerad: Elsevier, 2016
Engelska.
Ingår i: Carbon. - 0008-6223. ; 98, 24-33
Läs hela texten
Läs hela texten
Läs hela texten
Läs hela texten
  • E-artikel/E-kapitel
Sammanfattning Ämnesord
Stäng  
  • Nanostructured Cu:CuCN x  composite coatings with high static and dynamic stiffness were synthesized by means of plasma-enhanced chemical vapor deposition (PECVD) combined with high power impulse magnetron sputtering (HiPIMS). Scanning electron microscope (SEM) images and energy-dispersive X-ray spectroscopy (EDS) mapping from cross-sectioned samples reveals a multi-layered nanostructure enriched in Cu, C, N, and O in different ratios. Mechanical properties of the coatings were investigated by Vickers micro-indention and model tests. It was observed that copper inclusions as well as copper interlayers in the CN x  matrix can increase mechanical damping by up to 160%. Mechanical properties such as hardness, elastic modulus and loss factor were significantly improved by increasing the discharge power of the sputtering process. Moreover the coatings loss modulus was evaluated on the basis of indentation creep measurements under room temperature. The coating with optimum properties exhibited loss modulus of 2.6 GPa. The composite with the highest damping loss modulus were applied on the clamping region of a milling machining tool to verify their effect in suppressing regenerative tool chatter. The high dynamic stiffness coatings were found to effectively improve the critical stability limit of a milling tool by at least 300%, suggesting a significant increase of the dynamic stiffness. 

Ämnesord

Engineering and Technology  (hsv)
Materials Engineering  (hsv)
Composite Science and Engineering  (hsv)
Teknik och teknologier  (hsv)
Materialteknik  (hsv)
Kompositmaterial och -teknik  (hsv)
Mechanical Engineering  (hsv)
Production Engineering, Human Work Science and Ergonomics  (hsv)
Maskinteknik  (hsv)
Produktionsteknik, arbetsvetenskap och ergonomi  (hsv)
Applied Mechanics  (hsv)
Teknisk mekanik  (hsv)
Nano Technology  (hsv)
Nanoteknik  (hsv)
Natural Sciences  (hsv)
Physical Sciences  (hsv)
Other Physics Topics  (hsv)
Naturvetenskap  (hsv)
Fysik  (hsv)
Annan fysik  (hsv)
Teknisk materialvetenskap  (kth)
Materials Science and Engineering  (kth)
Production Engineering  (kth)
Industriell produktion  (kth)
Hållfasthetslära  (kth)
Solid Mechanics  (kth)
Kemi  (kth)
Chemistry  (kth)
Inställningar Hjälp

Beståndsinformation saknas

Om LIBRIS
Sekretess
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy