Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:5gpwv62f37f1llbl > Mechanisms of mecha...

Mechanisms of mechanically induced Osteoclastogenesis in a novel <em>in vitro</em> model for bone implant loosening / Cornelia Bratengeier.

Bratengeier, Cornelia, 1983- (författare)
Fahlgren, Anna, Linköping, 1972- (preses)
Aspenberg, Per, 1949-2018 (preses)
Sigvardsson, Mikael, 1965- (preses)
Kennedy, Oran (opponent)
Linköpings universitet. Institutionen för klinisk och experimentell medicin (utgivare)
Alternativt namn: Linköping University. Department of Clinical and Experimental Medicine
Alternativt namn: Linköping University. Faculty of Health Sciences. Department of Clinical and Experimental Medicine
Alternativt namn: IKE
Linköpings universitet Medicinska fakulteten (utgivare)
Publicerad: Linköping : Linköping University, Department of Clinical and Experimental Medicine, 2019
Engelska 1 onlineresurs (47 sidor)
Serie: Linköping University Medical Dissertations, 0345-0082 ; 1696
Läs hela texten (Linköping University, Department of Clinical and Experimental Medicine)
Läs hela texten
Läs hela texten
  • E-bokAvhandling(Diss. (sammanfattning) Linköping : Linköpings universitet, 2019)
Sammanfattning Ämnesord
Stäng  
  • Total joint arthroplasty is the primary intervention in the treatment of end-stage osteoarthritis. Despite the high success rate, in some patients, the replacement will fail during their lifetime requiring a revision of the implant. These revisions are strenuous for the patient and costly for health care. Joint replacement at a younger age, in combination with a more active lifestyle, increases the need for an early revision of the joint prosthesis. The main reason for revision surgeries is aseptic loosening, a condition where the prosthesis is loosening due to bone degradation at the peri-prosthetic interface in the absence of infections. The most well-established pathological mechanism for aseptic loosening is related to wear particles, generated from different parts of the prosthesis that will trigger bone degradation and bone loss. In addition, early micromotions of the prosthesis and resulting local pressurized fluid flow in the peri-prosthetic interface (supraphysiological loading) have also been identified as a cause for aseptic loosening. However, it remains unknown what cells are the primary responders to supraphysiological loading, and what underlying physical, cellular and molecular mechanism that triggers osteoclast differentiation and osteolysis. In this thesis, we intended to shed light on three currently unknown aspects of mechanical loading-induced peri-prosthetic osteolysis, leading to aseptic loosening of orthopedic prostheses: (1)Which cells are the primary responder to supraphysiological loading? (2)What characteristics of the mechanical stimulus induce an osteo-protective or osteo-destructive response? (3)Which cellular mechano-sensing mechanisms are involved in an osteo-destructive response? We successfully implemented supraphysiological mechanical loading, mimicking the periprosthetic pressurized fluid flow around a loosening implant, in an in vitro model for bone implant loosening. Using this model, we uncovered the involvement of mesenchymal stem cells and myeloid progenitor cells (monocytes) in mechanical loading-induced peri-prosthetic osteolysis. Applying supraphysiological loading on cells from patients undergoing primary hip arthroplasty, successfully validated the in vitro model for the use of cells of human origin. We further identified in murine myeloid progenitor cells that a combination of high loading amplitude (3.0±0.2Pa), prolonged active loading duration per cycle (duty cycle 22%-50%), and rapid alterations in minimum/maximum values of the loading profile (square wave) is necessary to induce an osteo-destructive response. Further, the loading-induced ATP release and subsequent activation of the P2X7 receptor was essential for the release of soluble factors modulating osteoclastogenesis. In conclusion, we expect that the proposed new in vitro model is a helpful tool to further advance the knowledge in aseptic loosening, by uncovering the mechanoresponsive cellular mechanism to supraphysiological mechanical loading. The identification of the respondent cells in mechanical loading-induced prosthetic loosening gives the opportunity to deliver targeted treatment strategies. Furthermore, identifying the physical parameters that define the shift towards an osteo-destructive response emphasizes the importance of the prosthetic design and surgical technique to reduce mechanical loading-induced bone degradation around a prosthesis. 

Ämnesord

Prostheses and Implants  (MeSH)
Prosthesis Failure  (MeSH)
Osteogenesis  -- physiology (MeSH)
Medical and Health Sciences  (ssif)
Basic Medicine  (ssif)
Cell and Molecular Biology  (ssif)
Medicin och hälsovetenskap  (ssif)
Medicinska och farmaceutiska grundvetenskaper  (ssif)
Cell- och molekylärbiologi  (ssif)

Genre

government publication  (marcgt)

Klassifikation

617.580592 (DDC)
Vfn (kssb/8 (machine generated))
Inställningar Hjälp

Titeln finns på 1 bibliotek. 

Bibliotek i östra Sverige (1)

Ange som favorit
Om LIBRIS
Sekretess
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy