Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:20183905 > Biomolecule Functio...

Biomolecule Functionalization of Diamond Surfaces for Implant Applications - A Theoretical Study [Elektronisk resurs]

Tian, Yuan 1989- (författare)
Larsson, Karin (preses)
Ojamäe, Lars (opponent)
Uppsala universitet Teknisk-naturvetenskapliga vetenskapsområdet (utgivare)
Uppsala Acta Universitatis Upsaliensis 2015
Engelska 79
Serie: Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1651-6214
Läs hela texten
Läs hela texten
  • E-bokAvhandling(Diss. (sammanfattning) Uppsala : Uppsala universitet, 2015)
Sammanfattning Ämnesord
Stäng  
  • Diamond is a promising material with unique chemical properties. In this thesis, nano-scale diamond quantum size effects were investigated using several chemical property indicators. The results show that the chemical properties are strongly dependent on size for film thicknesses smaller than 1 nm (1D), and for nanodiamond particle diameters less than 2 nm (3D). When the sizes exceed these ranges there are no longer any quantum effects. The influence of surface termination coverage on the surface chemical properties has been calculated for the 2×1 reconstructed diamond (100) surface and for the diamond (111) surface. The terminating species included COOH and NH 2 groups, which both are beneficial for the immobilization of biomolecules. The results of the calculations show that it is energetically possible to terminate the diamond surfaces up to 100% with NH 2 , while it is only possible to cover the surfaces up to 50% with COOH species. The reason for the latter result is most probably the larger sterical hindrance amongst the adsorbates. Both types of termination species were shown to influence the diamond surface electronic properties (e.g., HOMO/LUMO levels). In order to extend the diamond utility for biomedical applications, especially implant design, interactions of various growth factors with the diamond surfaces were also simulated. For non-solvent diamond-biomolecule systems, the results show that adhesion affinities are strongly dependent on biomolecule molecular weights. When including a water based solvent in the systems, the results show good physisorption affinities between proteins and diamond. Proteins structures, before and after physisorption, were visualized, and further investigated with respect to electrostatic properties and functional groups. By comparing the biomolecular structural changes during the adhesion processes, it can be concluded that both the general structures, as well as the binding pocket structures, were kept intact after the adhesion to the diamond surfaces (regardless of the adhesion affinities). In addition, the surface electronic potential distributions were maintained, which indicate preserved biomolecule functionalities. 

Ämnesord

Engineering and Technology  (hsv)
Medical Engineering  (hsv)
Medical Materials  (hsv)
Teknik och teknologier  (hsv)
Medicinteknik  (hsv)
Medicinska material och protesteknik  (hsv)
Natural Sciences  (hsv)
Chemical Sciences  (hsv)
Theoretical Chemistry  (hsv)
Naturvetenskap  (hsv)
Kemi  (hsv)
Teoretisk kemi  (hsv)
Kemi med inriktning mot materialkemi  (uu)
Chemistry with specialization in Materials Chemistry  (uu)

Indexterm och SAB-rubrik

Diamond
Biomolecules
Functionalization
VEGF
BMP2
Fibronectin
Chitosan
Heparin
RGD peptide
Angiopoietin
Theoretical
Inställningar Hjälp

Uppgift om bibliotek saknas i LIBRIS

Kontakta ditt bibliotek, eller sök utanför LIBRIS. Se högermenyn.

Om LIBRIS
Sekretess
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy