Hjälp
Sök i LIBRIS databas

Sökning: onr:q30tdt9znvfqsmms > Analysis of the Rob...

# Analysis of the Robin-Dirichlet iterative procedure for solving the Cauchy problem for elliptic equations with extension to unbounded domains / Pauline Achieng.

Achieng, Pauline, 1990- (författare)
Berntsson, Fredrik, 1971- (preses)
Carlssson, Linus (opponent)
Alternativt namn: Linköpings universitet. Tekniska högskolan. Matematiska institutionen
Alternativt namn: Linköping University. Department of Mathematics
Alternativt namn: MAI
Engelska 1 onlineresurs (vi, 10 sidor)
Serie: Linköping studies in science and technology. Licentiate thesis, 0280-7971 ; 1891
Läs hela texten (Sammanfattning och ramberättelse från Linköping University Electronic Press)
Läs hela texten
Läs hela texten
Sammanfattning Ämnesord
Stäng
• In this thesis we study the Cauchy problem for elliptic equations. It arises in many areas of application in science and engineering as a problem of reconstruction of solutions to elliptic equations in a domain from boundary measurements taken on a part of the boundary of this domain. The Cauchy problem for elliptic equations is known to be ill-posed. We use an iterative regularization method based on alternatively solving a sequence of well-posed mixed boundary value problems for the same elliptic equation. This method, based on iterations between Dirichlet-Neumann and Neumann-Dirichlet mixed boundary value problems was first proposed by Kozlov and Maz’ya [13] for Laplace equation and Lame’ system but not Helmholtz-type equations. As a result different modifications of this original regularization method have been proposed in literature. We consider the Robin-Dirichlet iterative method proposed by Mpinganzima et.al [3] for the Cauchy problem for the Helmholtz equation in bounded domains. We demonstrate that the Robin-Dirichlet iterative procedure is convergent for second order elliptic equations with variable coefficients provided the parameter in the Robin condition is appropriately chosen. We further investigate the convergence of the Robin-Dirichlet iterative procedure for the Cauchy problem for the Helmholtz equation in a an unbounded domain. We derive and analyse the necessary conditions needed for the convergence of the procedure. In the numerical experiments, the precise behaviour of the procedure for different values of k² in the Helmholtz equation is investigated and the results show that the speed of convergence depends on the choice of the Robin parameters, μ₀ and μ₁. In the unbounded domain case, the numerical experiments demonstrate that the procedure is convergent provided that the domain is truncated appropriately and the Robin parameters, μ₀ and μ₁ are also chosen appropriately.

### Ämnesord

Partiella differentialekvationer  (sao)
Natural Sciences  (ssif)
Mathematics  (ssif)
Computational Mathematics  (ssif)
Naturvetenskap  (ssif)
Matematik  (ssif)
Beräkningsmatematik  (ssif)

### Genre

government publication  (marcgt)

### Klassifikation

515.3533 (DDC)
55J25 (msc)
Tdcbbb (kssb/8 (machine generated))
Inställningar Hjälp

Titeln finns på 2 bibliotek.

Ange som favorit

Ange som favorit

### Sök utanför LIBRIS

Hjälp
Om LIBRIS
Sekretess
Blogg
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Sondera
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.