Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:3fcdkw4c1f4n7p2r > Regularization for ...

Regularization for sparseness and smoothness applications in system identification and signal processing / Henrik Ohlsson.

Ohlsson, Henrik, 1981- (författare)
Ljung, Lennart (preses)
Roll, Jacob (preses)
Wahlberg, Bo (opponent)
Linköpings universitet Institutionen för systemteknik (utgivare)
Linköpings universitet Tekniska högskolan (utgivare)
Publicerad: Linköping : Linköping University Electronic Press, 2010
Engelska 1 onlineresurs (89 sidor)
Serie: Linköping Studies in Science and Technology. Dissertations, 0345-7524 0345-7524 ; 1351
Läs hela texten (Sammanfattning och ramberättelse från Linköping University Electronic Press)
Läs hela texten
  • E-bokAvhandling(Diss. (sammanfattning) Linköping : Linköpings universitet, 2010)
Sammanfattning Ämnesord
Stäng  
  • In system identification, the Akaike Information Criterion (AIC) is a well known method to balance the model fit against model complexity. Regularization here acts as a price on model complexity. In statistics and machine learning, regularization has gained popularity due to modeling methods such as Support Vector Machines (SVM), ridge regression and lasso. But also when using a Bayesian approach to modeling, regularization often implicitly shows up and can be associated with the prior knowledge. Regularization has also had a great impact on many applications, and very much so in clinical imaging. In e.g., breast cancer imaging, the number of sensors is physically restricted which leads to long scantimes. Regularization and sparsity can be used to reduce that. In Magnetic Resonance Imaging (MRI), the number of scans is physically limited and to obtain high resolution images, regularization plays an important role. Regularization shows-up in a variety of different situations and is a well known technique to handle ill-posed problems and to control for overfit. We focus on the use of regularization to obtain sparseness and smoothness and discuss novel developments relevant to system identification and signal processing. 
  • In regularization for sparsity a quantity is forced to contain elements equal to zero, or to be sparse. The quantity could e.g., be the regression parameter vectorof a linear regression model and regularization would then result in a tool for variable selection. Sparsity has had a huge impact on neighboring disciplines, such as machine learning and signal processing, but rather limited effect on system identification. One of the major contributions of this thesis is therefore the new developments in system identification using sparsity. In particular, a novel method for the estimation of segmented ARX models using regularization for sparsity is presented. A technique for piecewise-affine system identification is also elaborated on as well as several novel applications in signal processing. Another property that regularization can be used to impose is smoothness. To require the relation between regressors and predictions to be a smooth function is a way to control for overfit. We are here particularly interested in regression problems with regressors constrained to limited regions in the regressor-space e.g., a manifold. For this type of systems we develop a new regression technique, Weight Determination by Manifold Regularization (WDMR). WDMR is inspired byapplications in biology and developments in manifold learning and uses regularization for smoothness to obtain smooth estimates. The use of regularization for smoothness in linear system identification is also discussed. The thesis also presents a real-time functional Magnetic Resonance Imaging (fMRI) bio-feedback setup. The setup has served as proof of concept and been the foundation for several real-time fMRI studies. 

Ämnesord

Matematiska modeller  (sao)
Systemteori  (sao)
Signalbehandling  (sao)
Engineering and Technology  (ssif)
Teknik  (ssif)
TECHNOLOGY  (svep)
TEKNIKVETENSKAP  (svep)
Signal processing  (lcsh)
Mathematical models  (lcsh)
System theory  (lcsh)

Genre

government publication  (marcgt)

Indexterm och SAB-rubrik

Regularization
sparsity
smothness
lasso
l1
fMRI
bio-feedback
Tas Matematisk simulering

Klassifikation

511.8 (DDC)
Tas (kssb/8)
Inställningar Hjälp

Titeln finns på 1 bibliotek. 

Bibliotek i östra Sverige (1)

Ange som favorit
Om LIBRIS
Sekretess
Blogg
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Sondera
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy