Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:z84sxrmpwdwr4g57 > Model error compens...

Model error compensation in ODE and DAE estimators with automotive engine applications / Erik Höckerdal.

Höckerdal, Erik, 1981- (författare)
Frisk, Erik (preses)
Peyton-Jones, James (opponent)
Linköpings universitet Institutionen för systemteknik (utgivare)
Linköpings universitet Tekniska högskolan (utgivare)
Publicerad: Linköping : Linköping University Electronic Press, 2011
Engelska 1 onlineresurs (30 sidor)
Serie: Linköping Studies in Science and Technology. Dissertations, 0345-7524 0345-7524
Läs hela texten (Sammanfattning och ramberättelse från Linköping University Electronic Press)
Läs hela texten
  • E-bokAvhandling(Diss. (sammanfattning) Linköping : Linköpings universitet, 2011)
Sammanfattning Ämnesord
Stäng  
  • Control and diagnosis of complex systems demand accurate information of the system state to enable efficient control and to detect system malfunction. Physical sensors are expensive and some quantities are hard or even impossible to measure with physical sensors. This has made model-based estimation an attractive alternative. Model based observers are sensitive to errors in the model and since the model complexity has to be kept low to enable use in real-time applications, the accuracy of the models becomes limited. Further, modeling is difficult and expensive with large efforts on model parametrization, calibration, and validation, and it is desirable to design robust observers based on existing models. An experimental investigation of an engine application shows that the model have stationary errors while the dynamics of the engine is well described by the model equations. This together with frequent appearance of sensor offsets have led to a demand for systematic ways of handling operating point dependent stationary errors, also called biases, in both models and sensors. Systematic design methods for reducing bias in model based observers are developed. The methods utilize a default model, described by systems of ordinary differential equations (ODE) or differential algebraic equations (DAE), and measurement data. A low order description of the model deficiencies is estimated from the default model and measurement data, which results in an automatic model augmentation. The idea is then to use the augmented model in observer design, yielding reduced stationary estimation errors compared to an observer based on the default model. Three main results are: a characterization of possible model augmentations from observability perspectives, a characterization of augmentations possible to estimate from measurement data, and a robustness analysis with respect to noise and model uncertainty. 
  • An important step is how the bias is modeled, and two ways of describing the bias are analyzed. The first is a random walk and the second is a parameterization of the bias. The latter can be viewed as an extension of the first and utilizes a parameterized function that describes the bias as a function of the operating point of the system. By utilizing a parameterized function, a memory is introduced that enables separate tracking of aging and operating point dependence. This eliminates the trade-off between noise suppression in the parameter convergence and rapid change of the offset in transients. Direct applications for the parameterized bias are online adaptation and offline calibration of maps commonly used in engine control systems. The methods are evaluated on measurement data from heavy duty diesel engines. A first order model augmentation is found for an ODE of an engine with EGR and VGT. By modeling the bias as a random walk, the estimation error is reduced by 50 % for a certification cycle. By instead letting a parameterized function describe the bias, better estimation accuracy and increased robustness is achieved. For an engine with intake manifold throttle, EGR, and VGT and a corresponding stiff ODE, experiments show that it is computationally beneficial to approximate the fast dynamics with instantaneous relations, transforming the ODE into a DAE. A main advantage is the possibility to use more than 10 times longer step lengths for the DAE based observer, without loss of estimation accuracy. By augmenting the DAE, an observer that achieves a 55 % reduction of the estimation error during a certification cycle is designed. 

Ämnesord

Dieselmotorer  (sao)
Matematiska modeller  (sao)
Natural Sciences  (ssif)
Computer and Information Sciences  (ssif)
Naturvetenskap  (ssif)
Data- och informationsvetenskap (Datateknik)  (ssif)
Engineering and Technology  (ssif)
Electrical Engineering, Electronic Engineering, Information Engineering  (ssif)
Control Engineering  (ssif)
Teknik  (ssif)
Elektroteknik och elektronik  (ssif)
Reglerteknik  (ssif)
TECHNOLOGY  (svep)
Information technology  (svep)
TEKNIKVETENSKAP  (svep)
Informationsteknik  (svep)
TECHNOLOGY  (svep)
Information technology  (svep)
Automatic control  (svep)
TEKNIKVETENSKAP  (svep)
Informationsteknik  (svep)
Reglerteknik  (svep)
Mathematical models  (LCSH)
Diesel motor  (LCSH)

Genre

government publication  (marcgt)

Klassifikation

629.25060011 (DDC)
Prabaa (kssb/8 (machine generated))
Inställningar Hjälp

Titeln finns på 1 bibliotek. 

Bibliotek i östra Sverige (1)

Ange som favorit
Om LIBRIS
Sekretess
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy