Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:20195308 > Plasma and Dust at ...

Plasma and Dust at Saturn's Icy Moon Enceladus and Comet 67P/Churyumov-Gerasimenko [Elektronisk resurs]

Engelhardt, Ilka. A. D. 1986- (författare)
Eriksson, Anders I. (preses)
Futaana, Yoshifumi (opponent)
Uppsala universitet Teknisk-naturvetenskapliga vetenskapsområdet (utgivare)
Uppsala universitet Teknisk-naturvetenskapliga vetenskapsområdet (utgivare)
RPF (medarbetare)
Uppsala University 2016
Engelska 67
Läs hela texten
Läs hela texten
  • E-bokAvhandling(Lic.-avh. (sammanfattning) Uppsala : Uppsala universitet, 2016)
Sammanfattning Ämnesord
Stäng  
  • Saturn’s moon Enceladus and comet 67P/Churyumov-Gerasimenko both are examples of icy solar system objects from which gas and dust flow into space. At both bodies, the gas becomes partly ionized and the dust grains get charged. Both bodies have been visited by spacecraft carrying similar Langmuir probe instruments for observing the plasma and the charged dust. The conditions at Enceladus and the comet turn out to be different, so we emphasize different aspects of their plasma environments. At Enceladus, we concentrate on the characteristic plasma regions and charged dust. At the comet, we investigate cold electrons. At Enceladus, internal frictional heating leads to gas escaping from cracks in the ice in the south pole region. This causes a plume of gas, which becomes partially ionized, and dust, becoming charged. We have investigated the plasma and charged nanodust in this region by the use of the Langmuir Probe (LP) of the Radio and Plasma Wave Science (RPWS) instrument on Cassini. The dust charge density can be calculated from the quasineutrality condition, the difference between ion and electron density measurements from LP. We found support for this method by comparing to measurements of larger dust grains by the RPWS electric antennas. We use the LP method to find that the plasma and dust environment of Enceladus can be divided into at least three regions. In addition to the well known plume, these are the plume edge and the trail region. At the comet, heat from the Sun sublimates ice to gas dragging dust along as it flows out into space. When gas molecules are hit by ionizing radiation we get a plasma. Models predict that the electron temperature just after ionization is around 10 eV, but that this collisions with the neutral gas should cool the electrons to below 0.1 eV. The Langmuir Probe instrument LAP has previously been used to show that the warm component exists at the comet. We present the first measurements of the cold component, co-existing with the warm component. We find that that the cold plasma often is observed as brief pulses in the LAP data, which we interpret as filamentation of the cold plasma. 

Ämnesord

Natural Sciences  (hsv)
Physical Sciences  (hsv)
Fusion, Plasma and Space Physics  (hsv)
Naturvetenskap  (hsv)
Fysik  (hsv)
Fusion, plasma och rymdfysik  (hsv)
Fysik med inriktning mot rymd- och plasmafysik  (uu)
Physics with specialization in Space and Plasma Physics  (uu)
Inställningar Hjälp

Uppgift om bibliotek saknas i LIBRIS

Kontakta ditt bibliotek, eller sök utanför LIBRIS. Se högermenyn.

Om LIBRIS
Sekretess
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy