Startsida
Hjälp
Sök i LIBRIS databas

     

 

Sökning: onr:8lphwv096gthcw5q > Compact Representat...

Compact Representations and Multi-cue Integration for Robotics [Elektronisk resurs]

Söderberg, Robert, 1974- (författare)
Nordberg, Klas, 1963- (preses)
Linköpings universitet Institutionen för systemteknik (utgivare)
Linköpings universitet Tekniska högskolan (utgivare)
Publicerad: Institutionen för systemteknik, 2005
Engelska 118
Serie: Linköping Studies in Science and Technology. Thesis, 0280-7971 0280-7971 ; 1160
Läs hela texten
Läs hela texten
  • E-bokAvhandling(Lic.-avh. Linköping : Linköpings universitet, 2005)
Sammanfattning Ämnesord
Stäng  
  • This thesis presents methods useful in a bin picking application, such as detection and representation of local features, pose estimation and multi-cue integration. The scene tensor is a representation of multiple line or edge segments and was first introduced by Nordberg in [30]. A method for estimating scene tensors from gray-scale images is presented. The method is based on orientation tensors, where the scene tensor can be estimated by correlations of the elements in the orientation tensor with a number of 1 D filters. Mechanisms for analyzing the scene tensor are described and an algorithm for detecting interest points and estimating feature parameters is presented. It is shown that the algorithm works on a wide spectrum of images with good result. Representations that are invariant with respect to a set of transformations are useful in many applications, such as pose estimation, tracking and wide baseline stereo. The scene tensor itself is not invariant and three different methods for implementing an invariant representation based on the scene tensor is presented. One is based on a non-linear transformation of the scene tensor and is invariant to perspective transformations. Two versions of a tensor doublet is presented, which is based on a geometry of two interest points and is invariant to translation, rotation and scaling. The tensor doublet is used in a framework for view centered pose estimation of 3 D objects. It is shown that the pose estimation algorithm has good performance even though the object is occluded and has a different scale compared to the training situation. An industrial implementation of a bin picking application have to cope with several different types of objects. All pose estimation algorithms use some kind of model and there is yet no model that can cope with all kinds of situations and objects. This thesis presents a method for integrating cues from several pose estimation algorithms for increasing the system stability. It is also shown that the same framework can also be used for increasing the accuracy of the system by using cues from several views of the object. An extensive test with several different objects, lighting conditions and backgrounds shows that multi-cue integration makes the system more robust and increases the accuracy. Finally, a system for bin picking is presented, built from the previous parts of this thesis. An eye in hand setup is used with a standard industrial robot arm. It is shown that the system works for real bin-picking situations with a positioning error below 1 mm and an orientation error below 1 o degree for most of the different situations. 

Ämnesord

Engineering and Technology  (hsv)
Electrical Engineering, Electronic Engineering, Information Engineering  (hsv)
Other Electrical Engineering, Electronic Engineering, Information Engineering  (hsv)
Teknik och teknologier  (hsv)
Elektroteknik och elektronik  (hsv)
Annan elektroteknik och elektronik  (hsv)
TECHNOLOGY  (svep)
Electrical engineering, electronics and photonics  (svep)
Electrical engineering  (svep)
TEKNIKVETENSKAP  (svep)
Elektroteknik, elektronik och fotonik  (svep)
Elektroteknik  (svep)

Genre

government publication  (marcgt)

Indexterm och SAB-rubrik

Electrical engineering
bin picking application
detection and representation of local features
pose estimation
multi-cue integration
Elektroteknik
Inställningar Hjälp

Titeln finns på 1 bibliotek. 

Övriga bibliotek (1)

Ange som favorit
Om LIBRIS
Sekretess
Blogg
Hjälp
Fel i posten?
Kontakt
Teknik och format
Sök utifrån
Sökrutor
Plug-ins
Bookmarklet
Anpassa
Textstorlek
Kontrast
Vyer
LIBRIS söktjänster
SwePub
Sondera
Uppsök

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

Copyright © LIBRIS - Nationella bibliotekssystem

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy